exercise on orientation.
ordering a random set of points into a simple closed polygon.
the bigger point is called the pivot, and is used as the origin to order the other ones by their polars.
it's not a surprise that the pivot is the closest to the x axis.
the black segment is where the last point meets the pivot.
this is the first step for finding the convex hull using the Graham algorythm.
click to define as many points as you want. press any key when you're ready.
to start over just click and click again.
<<

To view this content, you need to install Java from java.com

class Point2D { float x; float y; Point2D(){ this.x = x; this.y = y; } Point2D (float X,float Y){ x = X; y = Y; } void display(){ ellipseMode(CENTER_RADIUS); ellipse(x, y, 2, 2); } } class Triangle2D { Point2D A, B, C; Triangle2D (Point2D A, Point2D B, Point2D C){ // constructor this.A = A; this.B = B; this.C = C; } // closes method Triangle2D (float x1, float y1, float x2, float y2, float x3, float y3){ // constructor this.A = new Point2D(x1,y1); this.B = new Point2D(x2,y2); this.C = new Point2D(x3,y3); } // closes method void display(){ line(A.x, A.y, B.x, B.y); line(B.x, B.y, C.x, C.y); line(C.x, C.y, A.x, A.y); A.display(); B.display(); C.display(); } void displayLines(){ line(A.x, A.y, B.x, B.y); line(B.x, B.y, C.x, C.y); line(C.x, C.y, A.x, A.y); } void displayPoints(){ A.display(); B.display(); C.display(); } void displayFill(){ triangle(A.x, A.y, B.x, B.y, C.x, C.y); } } class Vector2D { Point2D A; float angle, magnitude; Vector2D (Point2D A, float angle, float magnitude){ // constructor this.A = A; this.angle = angle; this.magnitude = magnitude; } // closes method Vector2D (float x,float y, float angle, float magnitude){ // constructor this.A = new Point2D(x,y); this.angle = angle; this.magnitude = magnitude; } // closes method void display(){ line(A.x, A.y, A.x + ( magnitude * sin(angle) ), A.y + ( magnitude * cos(angle) ) ); A.display(); } void displayEnd(){ Point2D B; B = new Point2D(A.x + ( magnitude * sin(angle) ), A.y + ( magnitude * cos(angle) ) ); B.display(); } Point2D startPoint(){ return (A); } Point2D endPoint(){ Point2D B; B = new Point2D(A.x + ( magnitude * sin(angle) ), A.y + ( magnitude * cos(angle) ) ); return (B); } } class Polygon2D { int vertices; Point2D[] A; Polygon2D (int vertices, Point2D[ ]A ){ // constructor this.vertices = vertices; this.A = new Point2D[vertices]; for (int i = 0; i < vertices; i++){ this.A[i] = A[i]; } } // closes method void display(){ for (int i = 0; i < vertices; i++){ int k = (i + 1) % (vertices); line(A[i].x, A[i].y, A[k].x , A[k].y ); A[i].display(); } } } Point2D midPoint(Point2D X,Point2D Y){ Point2D mid; mid = new Point2D( X.x +( (Y.x-X.x)/2 ), X.y +( (Y.y-X.y)/2 ) ); // fun to change any of this 2 for a 3 return (mid); } Point2D randomChoice(Point2D X, Point2D Y, Point2D Z){ float r = random(0,3); Point2D rand; if (r < 1f) rand = new Point2D( Y.x, Y.y ); else{ if(r < 2f) rand = new Point2D( X.x, X.y ); else rand = new Point2D( Z.x, Z.y ); } return (rand); } Point2D randomPoint(){ float rx = random(0,1); float ry = random(0,1); Point2D rand; rand = new Point2D( width * rx, height * ry ); return (rand); } float area2(Point2D A, Point2D B, Point2D C) { return (A.x - C.x) * (B.y - C.y) - (A.y - C.y) * (B.x - C.x); } boolean insideTriangle(Point2D A, Point2D B, Point2D C, Point2D P){ // ABC is assumed to be counterclockwise return area2(A, B ,P ) >= 0 && area2(B, C, P) >= 0 && area2(C, A, P) >= 0; } boolean triangulate (Point2D[] P,Triangle2D[] tr) { // P contains all n polygon vertices in ccw order // the resulting triangles will be stored in array tr // this array tr must have lenght n-2 boolean salir= false; int n = P.length, j = n - 1, iA = 0, iB, iC; int[] next = new int[n]; for (int i= 0; i < n; i++) { next[j] = i; j = i; } for (int k = 0; k < n-2; k++) { // find a suitable triangle consisting of // two edges and an internal diagonal Point2D A, B, C; boolean triaFound = false; int count = 0; while (!triaFound && ++count < n) { iB = next[iA]; iC = next[iB]; A = P[iA]; B = P[iB]; C = P[iC]; if(area2(A, B, C) >= 0) { // edges AB and BC, diagonal AC // test to see if no other polygon vertex // lies within triangle ABC: j = next[iC]; while( j != iA && !insideTriangle(A, B, C, P[j])) j = next[j]; if ( j == iA) { // then triangle ABC contains no other vertex: tr[k] = new Triangle2D(A, B, C); next[iA] = iC; triaFound = true; } } iA = next[iA]; } if (count >= n) { //println("not a simple polygon" + //" or vertex sequence not counterclockwise"); salir =true; //System.exit(1); } } return(salir); } float distance2(Point2D P, Point2D Q) { float dx = P.x = Q.x, dy = P.y = Q.y; return dx * dx + dy * dy; }

Source code: convexHull_0b

Built with Processing